
SoftSaddle Readme file

Manuel Plasencia Gutiérrez (mpg2@hi.is), Carlos Argáez (carlos@hi.is)



Abstract

SoftSaddle performs saddle point searches in the vicinity of a given minimum. The
software uses the Improved Minimum Mode Following method as described in [1]. Bellow
is given the basic information needed to execute the code.



Chapter 1

Introduction

This file contains all you need to know to be able to easily run SoftSaddle and compiling
its required libraries. To reproduce the results from [1] and [2] please verify the script
run.sh according to what it is explained in Sec 3.3. Should you want to run SoftSaddle
independently and without script, then please see Chap 5. In this document you will
find what libraries you need to run SoftSaddle and how to understand and modify the
input file (iniConfig.m), see Chap 4.

2



Chapter 2

Software requirements

For SoftSaddle:

• matlab

– Parallel Computing Toolbox

– Statistics Toolbox.

For the libraries to compile:

• gcc

• Blitz++

• Boost

• GSL

For the bashscript run.sh to run your shell must recognise the next bash commands
(basic commands in bash, commonly accessible but just making sure):

• lscpu

• sed

• if, then, else, fi commands

• basic bash multiplication

• ldconfig

• cut

• grep

• exit

3



• echo

Make sure that the command:

$ matlab

works properly in your computer. You can check that by doing:

$ which matlab

and it should print the address where the matlab executable is located. Otherwise,
keep in mind where the matlab executable is located for later you will need to edit the
run.sh script. That is something very simple to do: See Sec 3.3.

Likewise, make sure that the command:

$ g++

works properly in your computer. You can check that by doing:

$ which g++

Make sure that blitz++, boost, GSL libraries are properly exported in your bash so
that they are accessible in your system. Otherwise, export them in run.sh, see Sec 3.3.

4



Chapter 3

About the run.sh script

3.1 Before running the script run.sh

run.sh is a bashscript written to automatically run SoftSaddle.tar.gz to reproduce
the results in [1] and [2]. Notice that it also untars the file SoftSaddle.tar.gz before it
starts running the problems in [1] and [2]. So it is written to do EVERYTHING. How-
ever, there are few requirements for it to work. All those requirements will be clearly
explain in this document.

DO NOT USE FOLDER NAMES WITH SPACES LIKE ”this folder”. Instead make
sure that all your folders’ names have NO spaces like ”thisfolder”. IMPORTANT!!

In SoftSaddle one can control the number of searches of Saddle Points by controlling
the total amount of processors you will use and the number of attempts you want to
perform. For example, if you will use only 4 processors and you want to perform 100
total Saddle Points searches, then you need to do 25 total attempts because:

4× 25 = 100 searches

Then the 100 searches are distributed in all 4 processors by an equal amount of attempts.

In the particular case of [1], the total number of processors used was 25 and the total
attempts was 220, which makes:

25× 220 = 5500 searches

INFORMATION EXTRA 3.1.1 There is an extra number you need to be acquain-
tance of because run.sh will use it: “maximum number of processors this computer has”.
That is just the amount of processors the computer has and it should be greater or equal
to the number of processors you will use, obviously.

Number of processors available in the computer ≥ Number of processors to used

5



run.sh utilizes lscpu to find out how many “cores per socket” your computer has
and accordingly it sets the input files.

Furthermore, it does set all folders, compiles the libraries (provided your computer
has all libraries properly installed and exported), run the problems and gives you the
results inside a folder named RESULTS.

3.2 Understanding the output of the script run.sh for your
system

The script run.sh will do several things, they are enumerated here:

1. It untars the file SoftSaddle.tar.gz where are located the code, the libraries and
the problems to be run

2. It makes the directory ”RESULTS” inside the main-untared directory ”SoftSaddle”

3. it sets the INPUT files to be executed

4. It goes to the corresponding folders and compile the first library (the library con-
taining the mixture of Davidson and Lanczos algorithms) and places the compiled
library in the corresponding folder

5. It compiles the Lanczos library and places it on the right folder

6. It computes the problem ”adaptive HSphere-lbfgs-davidson-sm50”

7. It executes the matlab script: ”get data for web benchmark.m”, which analyses
the results for adaptive HSphere-lbfgs-davidson-sm50

8. It computes the problem ”adaptive HSphere-lbfgs-lanczos-sm0”

9. It executes the matlab script: ”get data for web benchmark.m”, which analyses
the results for adaptive HSphere-lbfgs-lanczos-sm0

10. It computes the problem ”adaptive HSphere-lbfgs-lanczos-sm50”

11. It executes the matlab script: ”get data for web benchmark.m”, which analyses
the results for adaptive HSphere-lbfgs-lanczos-sm50

12. It finishes and exits

13. The results will be on the folders inside SoftSaddle/RESULTS and they are saved
in the file with extension *.con

6



3.3 Setting the script run.sh for your system

This bash scripts can only work if the libraries

• gcc

• Blitz++

• Boost

• GSL

are properly installed and exported in your computer. Make sure that the bash
commands

• lscpu

• sed

• if

• basic bash multiplication

are also available in your shell. Now, follow the next instructions:
Should you need to export the libraries gcc needs to compile, then please do it in the

bash script, do it in the same section shown in figure 3.4.

7



Figure 3.1: Section in which you would export your library paths, if necessary.

8



Does your computer allows hyperthreading?

Figure 3.2: If your computer allows hyperthreading, then modify this into true.

9



Does the running computer allows the command ldconfig -p?

Figure 3.3: If the running computer allows the command ldconfig -p set this to true.

Otherwise, if it does not allows the command ldconfig -p, then you need to set it
as false and then use the whole address to the library libstdc++.so.6 as:

Figure 3.4: If the running computer does not allows the command ldconfig -p, then
you need to set it as false and then use the whole address to the library libstdc++.so.6.

10



The bash script automatically checks for how many “cores per socket” or for how
many “hyperthreading” cores your computer has. If you allow HYPERTHREAD=true then
it will check for hyperthreading, if HYPERTHREAD=false, it will use physical cores. Ac-
cordingly it will automatically set all parameters to run the results in [1] and [2] and it
will find:

• The number of processors the computer will use

• The number of attempts accordingly to reproduce the results in [1] and [2]

• The number of processors the computer has

11



Using the bash command lscpu, our script run.sh will automatically decide how
many processors it will use and it will automatically set the input file iniConfig.m

accordingly. Should you want to modify manually iniConfig.m , see Sec 3.3. Notice
that in [1] and [2], the results were obtained by running 5500 searches distributed in 25
processors with 220 attempts.

NOTICE THAT: run.sh WILL NOT VERIFY IF YOU HAVE 25 AVAIL-
ABLE PROCESSORS TO RUN. So, if you want to use 25 processor to identically
compute the results as in [1] and [2], then read 3.3.1:

IMPORTANT 3.3.1 The bash script has a line that asks whether you have 25 available
processors in your machine to run all our computations. Should you have those available
25, please edit the bash script with vim or any other editor you would prefer, and change
the line YES=false to YES=true. See the next figure:

Figure 3.5: If you have 25 available processors to run, change false to true as in the
figure.

In case your computer does NOT have 25 free processors to run the results in [1] and
[2], then do NOT modify the run.sh for it will set things automatically.

12



The bashscript will verify where is located the library libstdc++.so.6. Commonly,
it is located in /usr/lib64/libstdc++.so.6 but according to the system libraries it
could also be located in folders like: /usr/lib/x86 64-linux-gnu/libstdc++.so.6.
So, the bash script will look for it and it will settle it for running with the actual
directory address of your system: /your/system/directory/libstdc++.so.6. It is a
good practices though to verify where is installed in case you would need to edit the
bashscript manually.

Now, run.sh will call matlab to execute SoftSaddle. If the command $ matlab

works in you shell without any other requirement, then this part is set. However,
should you need to use the whole path to be able to call the executable of matlab,
as /home/user/matlab/bin/matlab then do the following:

Localize the section in the bashscript where you must define matlab whole path, see
figure 3.6.

Figure 3.6: Example of how looks the call to matlab.

13



And replace ”matlab” with the whole address to the matlab executable
/the/whole/path/to/call/matlab. See figure 3.7 in which one particular example is
given.

Figure 3.7: Particular example, very pedagogical, of how to modify the script to call the
executable of matlab.

In a similar way as explained before, verify the proper location of the command:

g++

Should you change it, just do it in the equivalent way you have already done it for
matlab.

3.4 Run the script run.sh

This script will run SoftSaddle and compile all required libraries. According to the
script, the libraries will be placed in the right folders and the correct paths will be given
to all files that required them.

To run it, just do:

$ ./run.sh

in the same folder where is located SoftSaddle.tar.gz.
If the bashscript is not executable, then just do:

$ chmod 777 run.sh

That will ensure that the script is executable, so it can be run.

3.5 Run a debug text with run.sh

Before you do any computation, check that everything looks OK. Edit run.sh and look
for the line:
RUNDEBUG=false

and change it for
RUNDEBUG=true

this will check that all libraries are properly found and it will tell you how many
processors it will use.

IMPORTANT 3.5.1 IF THE COMMAND matlab IS NOT FOUND THE BASH-
SCRIPT WILL EXIT REGARDLESS OF YOU HAVE CHOSEN TO DEBUG OR
NOT. SO MAKE YOUR THE matlab COMMAND IS PROPERLY SET IN YOUR
COMPUTER.

14



3.6 Run a test with run.sh

It will be good to run a small test with this bashscript. This is a small computation
that should last few minutes (it is been measured to be less than 5 minutes) and it will
run the bashscript, compile the libraries, set the input file, set the SoftSaddle.m to run,
and execute the script to analyse the results. If it runs fine the it means you are set to
reproduce the long computation results (those take much longer). To do this checking,
just go to the line RUNFASTTEST=false and change it by RUNFASTTEST=true

Then the bash script will automatically set the input files to run 1 max attempt with
2 processors (2 saddle point searches it total) with 10 repetitions.

If you don’t want to run this test, just make sure that this option is set as false:
RUNFASTTEST=false

Once you have completely run the test with satisfaction, then just remove the folder
SoftSaddle, set the option to false and run, be patient because it will take long time.

15



Chapter 4

About the code SoftSaddle

Although the bash script run.sh takes care of everything. It is usually a very good
practise to know what is what we are running and how to modify the required parameters.
However, for first use run.sh takes cares of everything.

4.1 SoftSaddle

SoftSaddle is a code written to find Saddle Points on potential energy surfaces (PES).
It needs to read two c++-compiled libraries liblanczos.so or libdavidson.so and
libmorse.so. These are shared libraries which are written using the libraries Blitz++,
Boost and GSL. SoftSaddle requires to be set in a way that matlab knows where to
read the SoftSaddle files when SoftSaddle.m is called. Obviously, SoftSaddle.m is
the matlab-function to be called when executing SoftSaddle.

SoftSaddle requires to read the input file called: iniConfig.m. All parameters when
running SoftSaddle must be set in iniConfig.m. However, the files of SoftSaddle must
be placed in a general folder with known direction while iniConfig.m is placed in the
folder where we want the results to be computed. Therefore, it is recommended to use
startup.m in which the address to the files of SoftSaddle is clearly set.

The contain of startup.m is only the next line:
addpath('/the/address/where/SoftSaddle/is/');
The iniConfig.m is the input file. All settings must be clear there and it can be

divided in 6 sections. In the following, the variables of each section will be explained.

4.1.1 Simulation

In this section, we have to put the values for different variables that refer to the simulation
itself.

NOTE: EVERY LINE MUST END WITH A ; (SEMICOLON)

• desired number sp =
This sets the total number of wanted saddle points. When that amount of saddle
points is obtained, the simulation stops. Preset to: 10500;

16



• parall search per min=
This is the number of parallel searches that SoftSaddle will carry out. Each one
of them will use one processor, so it could be said as well to be the number of
processors we will use. Preset to: 25;

• max attempts =
This is the total number of attempts SoftSaddle will carry out. It will search for
saddle points up to this number per each repetition. Preset to: 220;

• real n cores=
This is the total number of processors the computer has. Preset to: 25;

• RUNTIME =
This is the total time in seconds that the computation will run. When this seconds
are finished, the computation stops. Preset to: 86400*10;

• absTol =
This is the tolerance in distances between two points to be consider the same point.
Less than or equal to mean: ”Same point” while bigger that this mean ”Different
points”. Preset to: 0.1;

• delta =
This is the MAXIMUM displacement allowed per iteration, measured in Am-
strongs. It means that this is the MAXIMUM allowed distance between two points
when computing the minimum mode. Preset to: 0.5;

• sigma =
This is the standard deviation for gaussian. Preset to: 0.3;

• a to disp =
This is the number of atoms (each atom has three coordinates) in the island to be
displaced. Preset: 7;

• pick rand atoms =
This allows to displace random atoms: Preset false; because we want to displace
those on the top.

• displace radius =
This is the variable that controls the distance from atoms in the centre. All between
this distance from the centre will be include in the displacement.

• get ini guess =
This means that SoftSaddle HAS to read the configuration from the given file in
the SoftSaddle folder. Preset to: true;

• bench energy =
This is the number for the energy, which means that SoftSaddle will write a report
(on screen) with the number of atoms with this energy. Preset to: 4.0;

17



• ref energy =
This energy will be used as stopping criterium for the web benchmark. Preset to:
1.5;

• distribution =
Variable to specify type of distribution for random displacements
Preset to: 1;
distribution=1 : Gausian distribution
distribution=2 : Uniform dist in n-1 subspace (number will be uniformly dis-
tributed arround an empty hypersphere with radius sigma)
distribution=3 : Uniform (a number between -1.0 and 1.0 is generated from uni-
form distribution, then multiply by sigma)
distribution=4 : Similar to 2 but relative to each displaced atom rather to relative
to the system. Uniform distribution in n-1 subspace (number will be uniformly
distributed around an empty hypersphere with radius sigma from each atom)

• f name = 'morse ';
This is the potential energy name. This is a name you will give to identify your
problem: User defined.

• write out to hdd =
This is a boolean variable to define if the detailed results should be written in the
harddisk. If chosen as true, they will be saved inside the folder where the iniCon-
fig.m is. Preset to: false;

• new displacement per tune =
This is a boolean variable. It sets if each repetition uses different starting points
for SP-searches. Preset to: true;

TO BE NOTICED:
The number of searches of Saddle Points depends on the total amount of processors you
will use and the number of attempts you want to perform. For example, if you will use
only 4 processors and you want to perform 100 total Saddle Points searches, then you
need to do 25 total attempts because:

4× 25 = 100 searches

Then the 100 searches are distributed in all 4 processors by an equal amount of attempts;
in the particular case of [1], the total number of processors used was 25 and the total
attempts was 220, which makes:

25× 220 = 5500 searches

18



4.1.2 Hyper sphere

These are the variables that control the hyper sphere.

• disp by hypersphere method =
This is a boolean variable to control if the initial displacements are generated on
the hyperspherical surface or not. Preset to: true;

• hyper rad0 =
This variable sets the initial radio of the hyper sphere. Preset to: 0.1;

• read from database =
This is a boolean variable to control if the distributed points on the hypersherical
surface are going to be recomputed for new computations, or if they will be read
from the preloaded data base. Preset to: true; The bash script run.sh takes cares
of this: If the number of displacements is unknown in the data base, the bashscript
changes to false, otherwise it changes to true.

• self learning hyper rad =
Boolean variable if chosen true: it uses variable hypersphere radius. If chosen false,
it uses constant hypersphere radius: R = hyper rad0.

• automatic self learning =
Preset to: true;False means a predefined scheduled for varying the hypersphere R
used. True means that the distances to sp and λ0 surfaces are used to vary the
hypersphere R.

• self learning scheme = 2;
Different ways to estimate change in hyper R. To reproduce the results in [1] and
[2] use: 2.

1: use minimum distance to lambda zero
2: use average distance to lambda zero
3: use maxima distance to lambda zero
4: use average of minima distances
5: use average of average distances
6: use average of maxima distances

• mix prev hyper rad = true;
True: average previous hyper R in the schemes (smoother transition from one
hyper R to next one)

• sort displacements = true;
True means displacements are sorted by furthest distances and chosen accordingly
False means the points are chosen randomly.

19



4.1.3 Minimizer

These are the variables that control the hyper sphere.

• min method =
This variable sets one of the two possible methods: LBFGS or CG (Conjugate
Gradient). Preset: 'LBFGS';

• memory size =
This variable sets the size of matrix that we want to preserved in memory for the
case of LBFGS. Preset: 60;

• finite diff step =
This is the delta for the finite difference method. Preset: 1e-4;

• cg iter max =
This is the maximum number of iterations for CG. Preset: 1000;

• ls iter max =
This is the maximum number of line search iterations. Preset: 1;

• cg err =
This is the CG error tolerance. Preset: 1e-3;

• ls err =
Line search error tolerance. Preset: 1e-2;

• max step size =
This variable is defined in SoftSaddle and it must be set to delta. Preset: delta ;

• RESET =
Boolean variable: if true CG is reset when lambda zero boundary is crossed. Preset:
false;

• get min mode =
Boolean variable. Set true to get the minimum mode. Preset: true;

• normalize direction =
Boolean variable: if true the search direction is normalized. Preset: true;

• maximum speed =
Preset: false;

• dE max =
If dE goes beyond this value the search is aborted. Preset: 480.0;

• obligate move =
Boolean variable. Preset: true;
True means the SP-search will be forced to initiate when the initial configuration

20



is very close to the minimum and where the gradient is smaller that the stopping
tolerance.

• use same formula =
Boolean variable. Preset: false;
True means using same MMF formula when first exit positive area

• alf =
Preset: [];
if equal zero -gradient is used as direction to escape positive area

• n intentos =
Preset: 0;
Attempts to force the system staying inside SP basin of attraction.

• avoid stuck in min =
Bolean variable: Preset: true;
True means convergence in area with positive eigenvalue will be rejected and the
system forced to keep searching for SPs. False means convergence in area with
positive eigenvalue will be rejected and the search will stop with a non-converged
message.

4.1.4 Eigenvectors: Lanczos, Davidson, etc

These are the variables that control Lanczos or Davidson algorithm.

• lib name=
Name of the *.so library to be read. Preset to: 'libdavidson'; It can also be:
'liblanczos';

• lib path=
Direction where the library will be read.

• lanc iter =
Maximum iterations to compute minimum mode using Lanczos or Davidson. Pre-
set to: 8;

• lanc abs tol =
Covergence tolerance for eigenvalue. Preset to: 0.01;

• lanc finite =
Variable to control the finite difference step. Preset to: finite diff step;

• save lanczos call =
Boolean variable: if true, the minimum mode is not calculated when the step is
smaller than a given percent of maximum step size. Preset to: true;

• save lanczos factor =
Percent of maximum step size (recomended 50% for max step size=0.5) 50.0;

21



4.1.5 Conjugate Grad

These are the variables that control the conjugate gradient.

• beta formula=9;
1: Hestenes and Stiefel
2: Polak-Ribiere
3: Liu and Storey
4: Dai-Yuan
5: Fletcher-Reeves
6: conjugate descent
7: Hestenes-Stiefel + Dai-Yuan
8: Polak-Ribiere + Fletcher-Reeves
9: Liu-Storey + conjugate descent

• modified CG =
Boolean variable. Preset to: false;
Uses a modified formula to compute search direction.

• e tol =
Tolerance to evaluate uniform descent condition in CG. Preset1e-8;

• get min mode lineSearch =
This variable is boolean. If true then calculates the minimum mode if needed.
Preset to true;

4.1.6 Repetitions for statistical analysis

These are the variables that control the repetitions.

• do repetition =
Boolean variable. Preset true;
This makes repetitions happen. When false, it does not make any repetition.
n repetition =
This the the number of repetitions that must be carry on. Preset to: 10;

22



Chapter 5

Generalities about SoftSaddle

5.1 Setting up the simulation variables

Edit the file iniConfig.m as extensively explained chapter 4

5.2 Execute the code

Should you execute the code manually rather than using the run.sh script, then follow the
next small algorithm to proceed. NOTE THAT TWO FILES MUST BE CONTAINED
IN THE FOLDER YOU ARE ABOUT TO RUN: iniConfig.m AND startup.m. The
first one is the input file, the second one is the file where matlab finds out where to read
SoftSaddle.

1. Place the file SoftSaddle.tar.gz in the folder you want and untar it: tar xvfz

SoftSaddle.tar.gz

2. cd SoftSaddle && mkdir RESULTS this enters the untarred SoftSaddle.tar.gz

file and creates the folder RESULTS

3. To compile libdavidson.so (which is the library to run Lanczos/Davidson algo-
rithm for computing the lowest eigenvalue) move to the folder where the libraries
are:

cd libraries/davidsson_lib/to_compile/

and compile the libdavidson.so. This is a shared library which is compiled with
the next command:

g++ -O3 -shared -Wl,-soname,libdavidson.so -o libdavidson.so -fPIC *.cpp

tridiag.c tridiagv.c -lgsl -lgslcblas

Make sure that all libraries are properly exported: Blitz++, Boost, GSL. Should
this compilation fail, then check your library path.

23



4. copy libdavidson.so to the folder where the source code is. From your last
location it should be:

cp libdavidson.so ../../../source_code/.

5. Move to the lanczos lib folder and compile the liblanczos.so library:

cd ../../lanczos lib/to compile/

g++ -O3 -shared -Wl,-soname,liblanczos.so -o liblanczos.so -fPIC *.cpp

tridiag.c tridiagv.c -lgsl -lgslcblas

6. Copy liblanczos.so to the folder where the source code is. From your last
location it should be:

cp liblanczos.so ../../../source_code/.

7. Move to the libmorse folder. From your last location, it should be: cd ../../libmorse/

8. Compile the libmorse.so library with the next command:

g++ -O3 -shared -Wl,-soname,libmorse.so -o libmorse.so -fPIC *.cpp -lgsl

-lgslcblas

9. Copy libmorse.so to the folder where the source code is. From your last location
it should be:

cp libmorse.so ../../source_code/.

10. Now you need go back to SoftSaddle untarred folder. From your last location it
should be:

cd ../../.

11. Copy the folders in test run/paper-result-reproduce/ into RESULTS/. To do that,
you can use the next instruction:

cp -r test_run/paper-result-reproduce/* RESULTS/

Enter into RESULTS, do:

cd RESULTS

12. To Run adaptive HSphere-lbfgs-davidson-sm50:
Enter to the folder:
adaptive HSphere-lbfgs-davidson-sm50: cd adaptive HSphere-lbfgs-davidson-sm50

Now, generate the startup.m file. Do as follows:

24



cd ../../source code/

address=$(pwd)
cd -

echo "addpath('"$address"');" > startup.m

This generates a file named startup.m whose solemnly content is the line
addpath('/the/path/to/source code');

You can also do it manually, just go the folder where the source code is and use
the command pwd. Then just copy that address into your startup.m manually.

13. Modify the iniConfig.m in the line lib path= and write the address where the
source code is. Now you can simply do it as: address2=$(echo "lib path='"$address"';")
sed -i "s|lib path=.*|$address2|g" iniConfig.m

You can also do it manually, just go the folder where the source code is and use
the command pwd. Then just copy that address into your iniConfig in the line
lib path='/the/path/to/source code' manually.

14. Make sure that the line lib path is set as follows: lib name='libdavidson';.
You can do it manually using any text editor your prefer or by doing:

sed -i "s/lib name=.*/lib name='libdavidson';/g" iniConfig.m

NOTICE THE UNDERLINE ” ”.

15. Again in iniConfig.m, you need to modify 3 parameters.
We want 5500 displacements to be able to reproduce the results in [1] and [2]. So,
how many processor does the computer have? then change the variable

parall search per min= with the number of processors you will use max attempts=

with the maximum attemps you will allow. Remember that parall search per min×
max attempts = 5500 This means that if you have 8 processors you can set
parall search per min=5

max attempts=1100

real n cores=8

Or you could also set
parall search per min=4

max attempts=1375

real n cores=8

Now, you can just run. LD PRELOAD="/usr/lib64/libstdc++.so.6" matlab -r

"SoftSaddle"

This will run the program. NOTICE THE UNDERLINE ” ”.
If libstdc++.so.6 is installed in other directory then you need to run:
LD PRELOAD="/your/system/directory/libstdc++.so.6" matlab -r "SoftSaddle"

25



16. To Run adaptive HSphere-lbfgs-lanczos-sm0 or adaptive HSphere-lbfgs-lanczos-sm50:
Just do exactly the as for adaptive HSphere-lbfgs-davidson-sm50 but be sure
that in the iniConfig.m the line lib name is set as follows: lib name='liblanczos';

5.3 Other generalities

• Always execute the code from within the folder RESULTS.

• To execute the code interactively open a matlab session and type:

[ lowestE, LowestX, Elist, Xlist, Esplist, Xsplist, Tableconnected ] = SoftSaddle;

• To execute the code in the background or to submit it to a queue system:
matlab -r "SoftSaddle;"

• Results are saved inside the folder RESULTS. A folder named 0 0 0 is created with
the results of a first local minimization preformed to bring the system to a local
minimum. Then a new folder is created for each saddle search conducted to save
the relevant details.

• A summary of the simulation is also saved in RESULTS, for instance a table show-
ing the relevant information about each saddle point search (i.e., computational
cost, energy, wether the saddle is connected or not, etc).

• Source code: The code is mainly written in Matlab. However the computation
of the lowest eigenvector of the Hessian matrix is conducted in an external C++
library. The path to the library may be defined in the iniConfig.m file, otherwise
the library should be in the same directory with all source code.

• The Davidson method for computing the lowest eigenvector is implemented as de-
scribed in [2]. This library can be found under the name file name libdavidson.so

5.4 The Pt heptamer island on a Pt(111) surface

The initial configuration of this system is read from hard drive at the beginning of the
simulation: Pt island iniConfiguration/displace bech.mat The file displace bech.mat is
formated in a way that has six columns and many rows. Each row represents one atom.
Column 1, column 2 and column 3 are x, y and z component respectively. Column 5
indicates wether the atom is free to move or not. 0 means free to move and 1 means
frozen. Column six represents atom ID and it goes from 0 to N-1 where N is total number
of atoms. The file can be edited in matlab.

26



Chapter 6

Possible failure causes

6.1 Libraries

Did you install Blitz++, Boos, GSL?
If so, Are they properly exported so that the system knows where to find them?

6.2 Libraries during compilation

davidson.cpp:24:25: fatal error: blitz/array.h: No such file or directory

#include <blitz/array.h>

^

compilation terminated.

matlab.cpp:1:25: fatal error: blitz/array.h: No such file or directory

#include <blitz/array.h>

^

compilation terminated.

In file included from tools.cpp:20:0:

tools.hpp:4:30: fatal error: boost/function.hpp: No such file or directory

#include <boost/function.hpp>

^

compilation terminated.

tridiag.c:22:26: fatal error: gsl/gsl_math.h: No such file or directory

#include <gsl/gsl_math.h>

^

compilation terminated.

tridiagv.c:22:26: fatal error: gsl/gsl_math.h: No such file or directory

#include <gsl/gsl_math.h>

^

compilation terminated.

cp: cannot stat ‘libdavidson.so’: No such file or directory

27



This error occurs for two possible reasons:

1. you don’t have properly install all libraries

2. you did install properly all libraries but you fail to export them

6.3 Error while loading shared libraries: libstdc++.so.5

Please verify that you a using matlab with your system’s libstdc++.so.5 library. The
bash script run.sh should be checking where you have such library with the command:

ldconfig -p | grep "^[[:space:]]*libstdc++.so.6.*x86-64" | cut -d\> -f2 | sed ’s/ //g’

and it should using matlab with such library with the command

6.4 bash: matlab: command not found

Make sure you have set properly the matlab command in the script. At the beginning
of the script there is a section:

#set this varible to the matlab path not needed if matlab command exists

#example MATLAB=/home/user/matlab/bin/matlab

MATLAB=

In there you need to add the whole address to your matlab

#set this varible to the matlab path not needed if matlab command exists

#example MATLAB=/home/user/matlab/bin/matlab

MATLAB=/whole/address/to/your/matlab

If the command $which matlab works in your computer, then this should not be
the problem

6.5 Error in SoftSaddle (line 422) mypool=parpool(real n cores);

This error comes because your computer’s logical processors don’t allow multithreading
with hyperthreading. To avoid this, use physical processors instead. So, at the beginning
of the script, go to the section:

#set to true if you want to use hyperthreading where its supported

#this will make the script count the number of logical processors instead

#of physical ones. Set to false if you want to count physical processors

HYPERTHREAD=true

and change HYPERTHREAD=true to HYPERTHREAD=false

28



Bibliography

[1] Manuel Plasencia Gutiérrez, Carlos Argáes and Hannes Jónsson Improved Minimum
Mode Following Method for Finding First Order Saddle Points, Journal of Chemical
Theory and Computation Article ASAP, 2016, DOI: 10.1021/acs.jctc.5b01216

[2] Carlos Argáes, Manuel Plasencia Gutiérrez and Hannes Jónsson Improved Mini-
mizer Methodology for Finding Low Energy First Order Saddle Points, In prepara-
tion.

29


	Introduction
	Software requirements
	About the run.sh script
	Before running the script run.sh
	Understanding the output of the script run.sh for your system
	Setting the script run.sh for your system
	Run the script run.sh
	Run a debug text with run.sh
	Run a test with run.sh

	About the code SoftSaddle
	SoftSaddle
	Simulation
	Hyper sphere
	Minimizer
	Eigenvectors: Lanczos, Davidson, etc
	Conjugate Grad
	Repetitions for statistical analysis


	Generalities about SoftSaddle
	Setting up the simulation variables
	Execute the code
	Other generalities
	The Pt heptamer island on a Pt(111) surface

	Possible failure causes
	Libraries
	Libraries during compilation
	Error while loading shared libraries: libstdc++.so.5
	bash: matlab: command not found
	Error in SoftSaddle (line 422) mypool=parpool(real_n_cores);


