
eOn Documentation

Henkelman Group

September 7, 2010

1 Getting the Code

The code is available to users with an account on theory.cm.utexas.edu. It can
be checked out of the subversion repository with the following command:

svn checkout svn+ssh://username@theory.cm.utexas.edu/Groups/svn/eon

This will fetch a copy of the latest code to a local directory eon. The work flow
for making changes, after editing the files, is to first see what files you have
modified:

svn status

This will give you a one line per changed file output of what you have done since
you checked out the code. It is often a good idea to run:

svn update

next to make sure that no other developers have commited changes since you
checked out your copy of the code you should run:

svn update

to get the latest copy of the code. It is possible that some other developer
modified the same file in the same places that you have. This means that there
will be some conflicts to resolve. This is a rare thing to happen and you should
read the online documentation to figure out how to handle it. Once you have
seen what changes you have made with ‘svn status‘ and ensured that you have
the latest version of the code with ‘svn update‘ you should commit your changes
to the repository:

svn commit -m "a brief message describing your changes"

1

http://svnbook.red-bean.com/en/1.5/index.html


2 Introduction

3 Input Files

Three input files are required to run an akmc simulation. The config.ini file
which sets the options for the server code. The parameters.dat file which is
passed on to the client and the initial configuration of the chemical system to
be modeled.

3.1 config.ini

3.1.1 aKMC

Option: temperature
Input: 300 (Kelvin)
Option: thermally accessible window
Input: 20 (kT)
Option: maximum thermally accessible window
Input: 2
Option: confidence
Input: 0.95
Option: max kmc steps
Input: 100000

3.1.2 Paths

Option: main directory
Input: .
Option: searches out
Input: %(main directory)s/searches/out/
Option: searches in
Input: %(main directory)s/searches/in/
Option: states
Input: %(main directory)s/states/
Option: results
Input: %(main directory)s
Option: scratch
Input: %(main directory)s/searches/scratch/
Option: kdb
Input: %(main directory)s/kdbscratch/
Option: superbasins
Input: %(main directory)s/superbasins/
Option: superbasin recycling
Input: %(main directory)s/SB recycling/

2



3.1.3 Communicator

Option: type
Input: local, mpi, boinc, cluster, arc
Option: search buffer size
Input: 100
Option: job bundle size
Input: 10
Option: client path
Input: eonclient
Option: number of CPUs
Input: 1
Option: mpi command
Input: mpirun -np %(number of CPUs)s mpi wrapper

3.1.4 Displacement

Option: type
Input: random, undercoordinated, leastcoordinated
Option: radius
Input: 5.0 (Å)
Option: size
Input: 0.01 (Å)
Option: maximum coordination
Input: 11

3.1.5 Recycling

Option: use recycling
Input: False, True (to become default True?)

Whether or not recycling is implemented to try to recycle saddles from ref-
erence states.
Option: save suggestions
Input: False, True

Whether or not the saddle suggestions that the recycler makes are saved.
Option: displace moved only
Input: False, True

Whether or not to only center displacements around atoms which moved
getting from the recycling reference state to the current state.
Option: move distance
Input: 0.2 (Å)

The distance an atom must have moved from the reference state to the
current state for it to be considered “moved.”
Option: use sb recycling
Input: False, True

3



Whether or not to try to find corresponding states in a new superbasin
when exiting a superbasin and recycle from these rather than the immediately
previous state.

3.1.6 KDB

Option: use kdb
Input: False, True
Option: wait
Input: False, True
Option: keep
Input: False, True

3.1.7 Superbasins

Option: use superbasins
Input: False, True

Whether or not superbasining is implemented (mutually exclusive with use askmc).
Option: scheme
Input: transition counting, energy level

Which sheme is used to define superbasins during the simulation.
Option: number of transitions
Input: 5

If “scheme” is set to number of transitions, this is the number of times a
barrier between two states must be seen before the states are “superbasined.”
Option: energy increment
Input: 0.1

Each time the state is visited a separate “copy” of its energy level is raised
by 0.1 eV. When the energy of the copy reaches that of the barrier between
states, those states are “superbasined.”

XXX? I’m not exactly sure how these “superbasin (novotny)” ones work, so
please check over them.
Option: use askmc
Input: False, True

Whether or not accelerated superbasin kmc is implemented (mutually ex-
clusive with use superbasins).
Option: askmc confidence
Input: (0.0 - 1.0), 0.9

The confidence for AS-KMC.
Option: askmc barrier raise param
Input: 1.5

The parameter which sets how much the barriers are raised during AS-KMC.
Option: askmc high barrier def
Input: 2

The parameter which defines how high a barrier must be to be considered
“high” in AS-KMC.

4



Option: askmc barrier test on
Input: True, False

Whether or not the test to ensure no low barriers are missed during AS-KMC
will be implemented.
Option: askmc connections test on
Input: False, True

Whether or not the test to ensure no internal low-barrier connections are
missed during AS-KMC will be implemented.

3.1.8 Structure Comparison

Option: energy difference
Input: 0.1 (eV)
Option: distance difference
Input: 0.05 (eV)
Option: use identical
Input: False, True

3.1.9 Debug

Option: keep bad saddles
Input: False, True
Option: keep all result files
Input: False, True
Option: random seed
Input: random, integer
Option: register extra results
Input: False, True
Option: list search results
Input: True, False
Option: use mean time
Input: False, True

3.2 parameters.dat

3.3 reactant.con

4 Output Files

5 Config Options

5.1 Recycling

5.1.1 use recycling

Input: False, True (to become default True?)

5



Recycling is a process whereby the saddle searches designed to find available
processes for a given state take suggestions from a reference state. This can
lead to moderate computational speedup, because the suggested displacements
for the saddle searches are often quite close to the actual saddle, and thus con-
vergence to the saddle requires fewer force calls. To obtain the displacement /
mode suggestions, the reference state (normally the previous state unless “Re-
cycling → use sb recycling” is set to True) and the current state are analyzed
such that each atom is classified as either having moved significantly or not
moved significantly getting from the reference state to the current state. Then
for each viable process found for the reference state, a corresponding process
is recommended to the current state. This is done by stepping through each
atom in the reference state, and if it is “unmoved” compared to the current
state, then its position in the suggested saddle is taken as that of its position
in the process saddle of the reference state. If it is “moved” compared to the
current state, then whatever motion it took in the process saddle is applied to
the current state. Recycling meta-data is stored in the directory of each state
(“main directory”/states/“#”/recycling info).

For example, consider the case of two, non-adjacent adatoms on a 100 sur-
face, each of which has four available processes, moving up/left/down/right. If,
for example, the left one shifts to the left, the system is in a new state, but if
recycling is on, much information can be gleaned from the previous state. The
recycler steps through those 8 known processes from the previous state, and in
each of the four in which the right (unmoved) adatom moves, its location in the
saddle will be suggested directly. In each of the four in which the left (moved)
adatom moves, its motion in the process will be applied to the current state, so
it should have be reasonably close in each case to the four movement directions
along the surface. Thus, recycling can lower the computational cost of finding
saddle points.

A few options are available with recycling:

5.1.2 save suggestions

Input: False, True
If save suggestions is turned on, a sub-directory in each state directory called

saddle suggestions is created and the coordinate files of the suggestions are saved
there.

5.1.3 displace moved only

Input: False, True
If this option is set to True, then the displacements which are made after

recycling suggestions have been completed are centered only around the atoms
which moved getting from the reference state to the current state. If there is
not a list of moved atoms available (for example, if the system is still at state 0),
then the displacement defined under “Displacement → type” is used. This can
significantly decrease the number of searches required per state, but assumes

6



that atoms which are not ‘close’ to moved atoms will only have processes which
were available in the reference state.

5.1.4 move distance

Input: 0.2 (Å)
This defines the distance an atom must have been displaced from the refer-

ence state to the current state for it to be considered “moved.”

5.1.5 use sb recycling

Input: False, True
This option dictates whether “superbasin recycling” is turned on. When set

to true, this monitors the development of superbasins, and makes the assump-
tion that when a superbasin is exited from, it is possible that the next state may
be in a similar superbasin. In that case, rather than always using the previ-
ous state as the reference state for recycling, this will try to find corresponding
states in a new superbasin and recycle from a better reference state to achieve
highest recycle success.

Perhaps the easiest example involves a trimer and a single adatom on a 100
surface in which the rotation of the trimer may be considered a superbasin and
the movement of the adatom is the most likely ‘escape’ from the superbasin to
a new state. However, the trimer is likely to again be in a rotating basin. Thus
when a superbasin is exited from, this method determines what “corresponding
states” are likely to look like by finding the process from each superbasin state
which involves similar movement to the process which led to the superbasin exit.
If no such process exists for any of the superbasin states, then normal recycling
resumes. Otherwise, superbasin recycling provides (hopefully) more appropriate
reference states to the states in the new superbasin as they are stepped to in
akmc.

5.2 Superbasins

5.2.1 use superbasins

Input: False, True

5.2.2 scheme

Input: transition counting, energy level

5.2.3 number of transitions

Input: 5

5.2.4 energy increment

Input: 0.1

7



5.2.5 use askmc

Input: False, True
The accelerated superbasin kmc (AS-KMC) method was proposed by Chat-

terjee and Voter 1 to accelerate exit from superbasins during a kmc simulation,
sacrificing the accuracy of intra-superbasin dynamics, but maintaining the ac-
curacy in superbasin exit time and direction. This can drastically increase the
timescales achievable in kmc simulations.

The basic process of AS-KMC involves gradually raising process barriers
found to be inside of a superbasin such that exiting from the basin gradually
becomes more likely. The method is designed to raise all the barriers in the
superbasin simultaneously. Once a particular barrier has been crossed a certain
number of times, Nf (more on determining Nf shortly), a check is performed
to determine whether or not the current state is part of a superbasin. This
is called the Superbasin Criterion. In the Superbasin Criterion, a search is
performed, originating at the current state and proceeding outward through
all low-barrier processes to adjacent states, and then through all low-barrier
processes from each of these states, etc. For each low-barrier process found, if
the process has been followed fewer than Nf times, the Superbasin Criterion
fails and no barriers are raised. Thus, in the outward-expanding search from
the originating state, the search continues until either a low-barrier process has
been seen fewer than Nf times (and the Criterion fails) or until all connected
low-barrier processes have been found and have been crossed at least Nf times
(the edges of the superbasin are then defined and the Criterion passes). If the
Superbasin Criterion passes, all the low-barrier processes (each of which as been
crossed Nf times) are raised.

Note, that this method may be contrasted to the other implemented method
to accelerate superbasin exit, referred to in the config file as Superbasins →
use superbasins. This method involves determining that the current state is in
a superbasin by one of a number of methods, then, given the states in the super-
basin, calculating the exact rates corresponding to exiting from the superbasin.
Thus, no intra-superbasin dynamics are preserved (even inaccurate dynamics),
but it may be expected that less error might result from using the other method.

Several parameters dictate the functioning of the AS-KMC method. These
parameters dictate (1) how much the barriers are raised each time the Super-
basin Criterion passes, (2) what defines a “low-barrier” for use in the Superbasin
Criterion, and (3) the approximate amount of error the user might expect in
eventual superbasin exit direction and time compared to normal kmc simula-
tion. Also, two of these parameters in combination determine Nf , the number
of times each low-barrier process must be seen before barriers may be raised in
a superbasin.

5.2.6 askmc barrier raise param

Input: 1.5

1THE JOURNAL OF CHEMICAL PHYSICS 132, 194101 2010

8



(1) α – When barriers are raised in the simulation, they are raised such
that the new rate constant is equal to the previous rate constant divided by α.
Chatterjee and Voter recommend a value of 2 for many systems; however, when
the time scales from the system are not known and time scales may overlap,
they recommend letting 1 ≤ α ≤ γ1/2 � Nf .

5.2.7 askmc high barrier def

Input: 2
(2) γ – When performing the Superbasin Criterion, a process is considered

a “low-barrier” process only in relation to the original process that started the
Superbasin Criterion (the process seen with number of sightings ≥ Nf ). If the
process in question has a barrier less than ln(γ) · kT more than the original
process, it is considered to be a low-barrier process. Chatterjee and Voter
recommend a value of 2 for most systems.

5.2.8 askmc confidence

Input: (0.0 - 1.0), 0.9
(3) δ – δ is a basic measure of the expected error in superbasin exit direction

and time. Given a value for δ, the value of Nf is calculated based on the
following:

Nf ≥
α− 1

δ
· ln(

1

δ
)

Therefore, as δ approaches 0, Nf approaches ∞ and the simulation will
be carried out nearly like normal kmc because the Superbasin Criterion will be
rarely checked and pass. Thus no superbasin acceleration will be achieved either.
Thus the higher the value of delta, the greater the computational speedup and
the higher possible error.

In this software, “confidence” is set by the user, rather than δ directly, to
avoid confusion with “confidence” and “error”. Thus to achieve a delta of 0.2,
the user would enter a confidence of 0.8.

Finally, because these simulations are actually AKMC, two extra options are
provided to ensure the accuracy of the Superbasin Criterion:

5.2.9 askmc barrier test on

Input: True, False
First, because the implemented Superbasin Criterion actually only considers

processes which have been passed over at least once, there is some chance that
a low-barrier process in a superbasin might have not been visited at all while all
other low-barrier processes have been visited at least Nf times. This is unlikely,
but this test verifies that such has not happened, considering even processes
which have not been visited when determining if the Superbasin Criterion has
passed. This check should not add significant overhead.

9



5.2.10 askmc connections test on

Input: False, True
Second, there is a method, connections test, to ensure that there are no

processes which connect states in the defined superbasin which have not been
visited yet and which have a low-barrier. This check is somewhat more compu-
tationally expensive than the previous because structure comparisons have to
be made when finding product states of unvisited processes.

10


